BUILDING A REST
API WITH SPRING
BOOT

UNTITLED

Overview
Source Code Download
For further interesting Content, you can follow me at
Getting Started
Exploring Maven Dependencies
Define MongoDB properties
Creating Domain Model
Creating Repository
Creating Custom Queries using (@Query,
Creating REST API
REST API URL Naming Conventions
Use Nouns instead of verbs
Use Lowercase Letters
Do not use file extensions
Add Expense
Response Status for POST Request
Testing POST Request
Get Expense
Response Status for GET Request
Testing GET Request
Get All Expenses
Testing GET Request
Update Expense
Response Status for PUT Requests
Testing PUT Request
Delete Expense
Response Status for DELETE Requests
Testing DELETE Request
Error Handling in REST API
Using (@ExceptionHandler Annotation
Using @ControllerAdvice
Using ResponseStatusException class
Testing REST API

Documenting the REST API
Why should we document our REST APIs?
What is Swagger?
Adding Springfox Dependencies to project
Configure Swagger and Springfox
Conclusion

Overview

In this ebook, you are going to learn how to build a REST API with Spring
Boot, we are going to build an Expense Tracker Application where users
can add and track their expenses.

Here are the technologies we are going to use to Build the REST API:

e Spring Boot
e MongoDB

To be able to follow along this ebook, you need to have a basic
understanding of Spring Boot.

Source Code Download

You can download the whole source code at Github

For further interesting Content, you can follow
me at

e Youtube

o Twitter

https://github.com/SaiUpadhyayula/expense-tracker-rest-api
https://www.youtube.com/channel/UCD20RZV_WHQImisCW2QZwDw
https://twitter.com/sai90_u

Getting Started

To get started, open Spring_Initializr website, and select the following
options.

As of writing this ebook, the latest version of Spring Boot is 2.4.2.

initializr

B

Project Language Dependencies ADD DEPENDENCIES... % +B

O Gradle Project QO Kotin O Groovy
. Lombok
Spring Boot Java annotation library which helps to reduce boilerplate code.
QO 250(SNAPSHOT) QO 250M0) O 2.4.3 (SNAPSHOT)
O 239 (SNAPSHOT) O 238 Spring Web
Build web, including RESTFul, applications using Spring MVC. Uses Apache Tomcat as the
Project Metadata default embedded container.

Group com.programming.techie

Spring Data MongoDB
Store data in flexible, JSON-like documents, meaning fields can vary from document to
document and data structure can be changed over time.

Artifact expense-tracker-api

Name expense-tracker-api

Testcontainers
Description Expense Tracker API Application Provide lightweight, throwaway instances of common databases, Selenium web browsers, or
anything else that can run in a Docker container.

Package name com.programming.techie.expense-tracker

Packaging QO War

Java Oon O

1Y)

| GENERATE & + < || EXPLORE CTRL + SPACE || SHARE... |

In the Spring Initializr home page, I selected the following options:
e Project : Maven Project
e Language: Java
e Spring Boot: Version 2.4.2
e Dependencies:
e Spring Web: To be able to build RESTful API using Spring MVC

e Spring Data MongoDB: To interact with MongoDB from the Spring
Boot Application

https://start.spring.io/

e Lombok: Java Annotation Library which helps to reduce boiler plate
code.

» Testcontainers: Provides lightweight instances of the Mongo Database
which we can run inside a Docker Container.

After providing the Project Metadata, you can download the project to your
machine, by clicking on the Generate button.

Exploring Maven Dependencies

Once you unzip and open the project in your favorite IDE, open the pom.xm1
file to have a look at the Maven dependencies which we are going to use in
our project.

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupld>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.4.1</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.programming.techie</groupId>
<artifactId>spring-boot-mongodb-tutorial</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>spring-boot-mongodb-tutorial</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>15</java.version>
<testcontainers.version>1.15.1</testcontainers.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-
mongodb</artifactId>
</dependency>
<dependency>
<groupld>org.springframework.boot</groupIld>

<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
<groupld>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupIld>org.testcontainers</groupId>
<artifactId>junit-jupiter</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupIld>org.testcontainers</groupld>
<artifactId>mongodb</artifactId>
<scope>test</scope>

</dependency>

</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.testcontainers</groupId>
<artifactId>testcontainers-bom</artifactId>
<version>${testcontainers.version}</version>
<type>pomn</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>

</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>

If you want to learn more about Maven, have a look at the
comprehensive Blog Post I wrote Maven Complete Tutorial

Define MongoDB properties

Now it’s time to configure the MongoDB properties inside the
application.propertiesfﬂe

You can define the MongoDB properties by either using the MongoURI or
by defining the host, username, password and database details.

Approach 1:

spring.data.mongodb.uri=mongodb://localhost:27017/expense-

tracker

Approach 2:
spring.data.mongodb.host=1localhost
spring.data.mongodb.username=<your-username>
spring.data.mongodb.password=<your-password>

spring.data.mongodb.database=expense-tracker

Creating Domain Model

The model class we are going to create for the Expense Manager application
1S the Expense. java class.

package com.programming.techie.expensetracker.model;

https://programmingtechie.com/2020/12/05/complete-maven-tutorial/
https://docs.mongodb.com/manual/reference/connection-string/

import lombok.*;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.index.Indexed;
import org.springframework.data.mongodb.core.mapping.Document;
import org.springframework.data.mongodb.core.mapping.Field;

import java.math.BigDecimal;

@Getter
@Setter
@AllArgsConstructor
@NoArgsConstructor
@Ruilder
@Document ("expense")
public class Expense {
@Id
private String id;
@Field ("name")
@Indexed (unique = true)
private String expenseName;
@Field ("category™)
private ExpenseCategory expenseCategory;
@Field ("amount")
private BigDecimal expenseAmount;

ExpenseCategory.java
package com.programming.techie.expensetracker.model;

public enum ExpenseCategory {
ENTERTAINMENT, GROCERIES, RESTAURANT, UTILITIES, MISC

}

This is just a normal POJO class, which contains some interesting
annotations, if you are not already aware of Lombok, it is an annotation
library which helps us reduce the boiler plate code.

In the above class,

e You can see that by adding the eGetter, @setter,
@AllArgsConstructor and @NoArgsConstructor W€ can genera&:the
required Getter, Setter Methods and the Constructors at compile time.

https://projectlombok.org/

e To define a Model Class as a MongoDB Document, we are going to use
the @Document (“expense”) where expense is the name of the
Document.

e @1d represents a unique identifier for our Document.

e We can represent different fields inside the Document using the erield
annotation.

e By Default, Spring Data creates the field inside the document using the
fieldName of the model class (Eg: expenseName), but we can override
this by providing the required value to the annotation eg:
@Field (“name”)

e To be able to easily retrieve the documents, we can also create an index
using the endexed annotaion.

e We can also specify the unique=true property to make sure that this
field is unique.

Creating Repository

Now it’s time to creating the Repository interface, which is responsible to
interact with MongoDB. Spring Data MongoDB provides an interface
called MongoRepository which provides an API to perform read and write
operations to MongoDB.

package com.programming.techie.expensetracker.repository;
import com.programming.techie.expensetracker.model.Expense;
import
org.springframework.data.mongodb.repository.MongoRepository;

import org.springframework.data.mongodb.repository.Query;

import java.util.Optional;

public interface ExpenseRepository extends
MongoRepository<Expense, String> {
@Query ("{'name': 20}")

Optional<Expense> findByName (String name) ;

Creating Custom Queries using @Query

We can also perform custom queries using the @ouery annotation and by
passing in the required query we need to run to this annotation.

In the below example:

@Query (" {'name': 20} ")
Optional<Expense> findByName (String name) ;

Spring Data will inject the value of the name field into the query, in the place
of the ?0 placeholder.

So we created the domain and repository layers in our application, now it's
time to go ahead and create the API layer.

Creating REST API

Now we are at the main part of our ebook, we are going to create the
RestController which is going to receive the HTTP Requests and is going to
delegate the requests to the Service Layer.

We are going to create a REST API, which exposes the following
functionality:

e Add Expense

Update Expense

Delete Expense

Get All Expenses

Get Expense by Name

First [am going to create two classes ExpenseController.java which acts as
the RestController to accept the incoming request and ExpenseService.java
which contains the business logic of the ExpenseManager application.

ExpenseController.java

package com.programming.techie.expensetracker.web;

import
com.programming.techie.expensetracker.service.ExpenseService;
import lombok.RequiredArgsConstructor;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping ("/api/expense")
@RequiredArgsConstructor

public class ExpenseController {

private final ExpenseService expenseService;

}

The @restcontroller is the central part of the API tier, it will accept the
RESTful HTTP Requests and delegate the request to the Service Layer.

The eRestController is basically a combination of the econtroller and
@ResponseBody annotations.

The usual convention to write the URL of the REST API is the start with the
prefix - /api, this is not mandatory, but a standard convention followed across
the industry.

REST API URL Naming Conventions

There are some pre-defined conventions which we have to follow to define
the URL of the REST API.

Use Nouns instead of verbs

API's are always designed around Resources, so in our example it's going to
be the Expense class.

Any kind of operations we are going to perform against those resources
should be defined through the HTTP Verbs like (GET, POST, PUT,
DELETE)

For example:

If you want to define the URL for the Add Expense Endpoint, instead of
naming the URL as /api/expense/add we are going to name it as
/api/expense/ and the action is taken care by the corresponding HTTP Verb
we will use, in this case it's going to be POST.

Use Lowercase Letters

Lowercase Letters should be preferred for the URI's as much as possible.
According to REC-3986 URIs are case sensitive except for the scheme and

https://www.ietf.org/rfc/rfc3986.txt

Host componenets.

Do not use file extensions

If you want to access a file, never use the extenstion as part of the URI, this is
because URI should be independent of the implementation.

For example instead of defining the URL for a pdf file like below:
/api/expense/report.pdf

Define it like below:

/api/expense/report

In the above case, we will communicate our intent that we need a PDF file
through the content-Type header, by using the Media Type parameter.

ExpenseService.java

package com.programming.techie.expensetracker.service;

import
com.programming.techie.expensetracker.repository.ExpenseRepositor
yi

import lombok.RequiredArgsConstructor;

import org.springframework.stereotype.Service;

import org.springframework.transaction.annotation.Transactional;

@Service
@RequiredArgsConstructor
@QTransactional

public class ExpenseService {

private final ExpenseRepository expenseRepository;

Add Expense

To add an expense we are going to receive the Request from the client and
delegate it to the Service Layer, the important thing to remember is to

decouple your Domain Layer (Expense.java) with your API/Presentation
Layer.

For this reason, we are going to use a Data Transfer Object (DTO) to receive
the input from the client and then map this object to our Domain Model.

For this reason we are going to create a ExpenseDto. java class

package com.programming.techie.expensetracker.dto;

import
com.programming.techie.expensetracker.model.ExpenseCategory;
import lombok.AllArgsConstructor;

import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

import java.math.BigDecimal;

@Data
@Al1l1ArgsConstructor
@NoArgsConstructor
@Builder
public class ExpenseDto {
private String id;
private String expenseName;
private ExpenseCategory expenseCategory;
private BigDecimal expenseAmount;

}

Now let’s add logic to add a new Expense first inside ExpenseService.java
package com.programming.techie.expensetracker.service;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.repository.ExpenseRepositor
yi

import lombok.RequiredArgsConstructor;

import org.springframework.stereotype.Service;

import org.springframework.transaction.annotation.Transactional;

@Service
@RequiredArgsConstructor
@Transactional

public class ExpenseService ({

private final ExpenseRepository expenseRepository;

public String addExpense (ExpenseDto expenseDto) {
Expense expense = mapFromDto (expenseDto) ;
return expenseRepository.insert (expense) .getId():;

}

private Expense mapFromDto (ExpenseDto expense) {
return Expense.builder ()
.expenseName (expense.getExpenseName ())
.expenseCategory (expense.getExpenseCategory())
.expenseAmount (expense.getExpenseAmount ())
Lbuild() ;

e We created the addeExpense method which is going to map the
ExpenseDto object to an Expense object.

e To map the ExpenseDto t0 Expense we are going to map it manually
uﬁngthen@pFrotho()nnﬂhod.

e Once we have the Expense object, we can save it to the database using
the expenseRepository.insert () method.

Now let's see how to implement ExpenseController.java
package com.programming.techie.expensetracker.web;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import
com.programming.techie.expensetracker.service.ExpenseService;
import lombok.RequiredArgsConstructor;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import
org.springframework.web.servlet.support.ServletUriComponentsBuild
er;

import java.net.URI;

@QRestController

@RequestMapping ("/api/expense")
@RequiredArgsConstructor
public class ExpenseController {

private final ExpenseService expenseService;

@PostMapping
public ResponseEntity<Void> addExpense (dRequestBody ExpenseDto
expenseDto) {
String expenseld = expenseService.addExpense (expenseDto) ;
URI location = ServletUriComponentsBuilder
.fromCurrentRequest ()
.path ("/{id}")
.buildAndExpand (expenseld)
.toUri () ;
return ResponseEntity.created(location)
Lbouild();
}

}

As I mentioned before, we are going to implement the Add Expense Endpoint
with a ePostMapping.

We are receiving the ExpenseDto as a @RequestBody and we are passing on
this object to Expenseservice which returns the expense1d of the created

Expense.

Response Status for POST Request

You can observe that we are returning a ResponseEntity with status as
CREATED, because according to REST conventions, when you send a
POST request, you are creating a Resource, so the appropriate response status
should be CREATED (201).

Also as part of the POST request, we should return the URL of the resource
we just created as part of the Locations Header, for this reason we are
dynamically constructing the URL and sending it as part of the response.

Testing POST Request

Let’s start our Spring Boot Application and make the REST API call to add
an expense.

NU Clhvironiment v s —_
http://localhost:8080/expense @ | G

Untitled Request

POST v http://localhost:8080/expense m Save v

Params Authorization Headers (9) Body ® Pre-request Script Tests Settings Cookies Code
none form-data x-www-farm-urlencoded ® raw binary GraphQL JSON ¥ Beautify
1ok |
2 "expenseName": "Movies",

3 "expenseCategory”: "ENTERTAINMENT",
a "expenseAmount™: 20
s j 4
Body Cookies Headers (4) TestResults @ Status: 201 Created Time: 167 ms Size: 128 B Save Response v
Pretty Raw Preview Visualize Text ~ 5 m Q

s

Get Expense

Next step i1s to implement the GET Expense endpoint to read a single
expense, we are going to use @GetMapping annotation.

ExpenseService.java

package com.programming.techie.expensetracker.service;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import
com.programming.techie.expensetracker.exception.ExpenseNotFoundEx
ception;

import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.repository.ExpenseRepositor
Y

import lombok.RequiredArgsConstructor;

import org.springframework.stereotype.Service;

import org.springframework.transaction.annotation.Transactional;

@Service
@RequiredArgsConstructor
@Transactional

public class ExpenseService {

private final ExpenseRepository expenseRepository;

public String addExpense (ExpenseDto expenseDto) {
Expense expense = mapFromDto (expenseDto) ;
return expenseRepository.insert (expense) .getId():;

}

public ExpenseDto getExpense (String name) {
Expense expense = expenseRepository.findByName (name)
.orElseThrow(() -> new

ExpenseNotFoundException (String.format ("Cannot Find Expense by
Name - %s", name)));
return mapToDto (expense) ;

}

private ExpenseDto mapToDto (Expense expense) {
return ExpenseDto.builder ()
.id (expense.getId())
.expenseName (expense.getExpenseName ())
.expenseCategory (expense.getExpenseCategory())
.expenseAmount (expense.getExpenseAmount ())
.build() ;

private Expense mapFromDto (ExpenseDto expense) {
return Expense.builder ()
.expenseName (expense.getExpenseName ())
.expenseCategory (expense.getExpenseCategory())
.expenseAmount (expense.getExpenseAmount ())
Jbuild()

We are receiving the expense name we want to read as an input parameter and
we are using the expenseRepository.findByName () to read the Expense

If we don't find an expense with a given name, we are throwing an

ExpenseNotFoundException
package com.programming.techie.expensetracker.exception;

public class ExpenseNotFoundException extends RuntimeException {

public ExpenseNotFoundException (String message) {
super (message) ;

ExpenseController.java

package com.programming.techie.expensetracker.web;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import
com.programming.techie.expensetracker.service.ExpenseService;
import lombok.RequiredArgsConstructor;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import
org.springframework.web.servlet.support.ServletUriComponentsBuild
er;

import java.net.URI;

@RestController

@RequestMapping ("/api/xpense™)
@RequiredArgsConstructor

public class ExpenseController {

private final ExpenseService expenseService;

@PostMapping
public ResponseEntity<Void> addExpense (@RequestBody ExpenseDto
expenseDto) {
String expenseld = expenseService.addExpense (expenseDto) ;
URI location = ServletUriComponentsBuilder
.fromCurrentRequest ()
.path("/{id}")
.buildAndExpand (expenseld)
.toUri () ;
return ResponseEntity.created(location)
.build();
}

@GetMapping ("/{name}")
@ResponseStatus (HttpStatus.OK)
public ExpenseDto getExpenseByName (@PathVariable String name)

return expenseService.getExpense (name) ;

We are receiving the expenseName as a URL PathVariable, and we are
returning the ExpenseDdto back to the client.

Response Status for GET Request
The appropriate response the GET Request is OK (200)
Testing GET Request

Let’s start our Spring Boot Application and make the REST API call to Get
One Expense.

4

No Environment v (@)
GET http://localhost:8080/expense/... ®

Untitled Request

GET v http://localhost:8080/expense/Movies m Save ¥

Params Authorization Headers (7) Body Pre-request Script Tests Settings Cookies Code
® none form-data x-www-form-urlencoded raw binary GraphQL
Body Cookies Headers (5) Test Results @® status: 2000K Time: 143ms Size: 273B Save Response ¥
Pretty Raw Preview Visualize JSON ~ 5 m Q
1 f
2 "id": "s5ff623025e4a1949b1679763",
3 "expenseName": "Movies",
4 "expenseCategory"”: "ENTERTAINMENT",
5 "expenseAmount”: 3@
6 I

Get All Expenses

Let's go ahead and implement the Endpoint logic to GET ALL Expenses.

ExpenseService.java

package com.programming.techie.expensetracker.service;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import
com.programming.techie.expensetracker.exception.ExpenseNotFoundEx
ception;

import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.repository.ExpenseRepositor
Yr

import lombok.RequiredArgsConstructor;

import org.springframework.stereotype.Service;

import org.springframework.transaction.annotation.Transactional;

import java.util.List;
import java.util.stream.Collectors;

@Service
@RequiredArgsConstructor
@Transactional

public class ExpenseService {

private final ExpenseRepository expenseRepository;

public String addExpense (ExpenseDto expenseDto) {
Expense expense = mapFromDto (expenseDto) ;
return expenseRepository.insert (expense) .getId()

}

public ExpenseDto getExpense (String name) {
Expense expense = expenseRepository.findByName (name)
.orElseThrow (() -> new
ExpenseNotFoundException (String.format ("Cannot Find Expense by
Name - %s", name)));
return mapToDto (expense) ;

}

public List<ExpenseDto> getAllExpenses () {
return expenseRepository.findAll ()
.stream/()

.map (this: :mapToDto) .collect (Collectors.toList())
}

private ExpenseDto mapToDto (Expense expense) {
return ExpenseDto.builder ()
.id (expense.getId())
.expenseName (expense.getExpenseName ())
.expenseCategory (expense.getExpenseCategory())

.expenseAmount (expense.getExpenseAmount ())
.build() ;

private Expense mapFromDto (ExpenseDto expense) {
return Expense.builder ()
.expenseName (expense.getExpenseName ())
.expenseCategory (expense.getExpenseCategory())
.expenseAmount (expense.getExpenseAmount ())
Lbuild();

In this case we are just reading all the Expense objects inside the database,
mapping them to ExpenseDto and returning them to the API layer.

ExpenseController.java

package com.programming.techie.expensetracker.web;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.service.ExpenseService;
import lombok.RequiredArgsConstructor;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import
org.springframework.web.servlet.support.ServletUriComponentsBuild
er;

import java.net.URI;
import java.util.List;

@RestController

@RequestMapping ("/api/xpense")
@RequiredArgsConstructor

public class ExpenseController ({

private final ExpenseService expenseService;

@PostMapping
public ResponseEntity<Void> addExpense (dRequestBody ExpenseDto
expenseDto) {
String expenseld = expenseService.addExpense (expenseDto);
URI location = ServletUriComponentsBuilder
.fromCurrentRequest ()

.path("/{id}")
.buildAndExpand (expenseld)
.toUri();

return ResponseEntity.created(location)
.build();

}

@GetMapping

@ResponseStatus (HttpStatus.OK)

public List<ExpenseDto> getAllExpenses () {
return expenseService.getAllExpenses|();

}

@GetMapping ("/{name}")
@ResponseStatus (HttpStatus.OK)
public ExpenseDto getExpenseByName (@PathVariable String name)

return expenseService.getExpense (name) ;

Testing GET Request

Let’s start our Spring Boot Application and make the REST API call to Get
All Expenses.

u
No Environment v <@ ==
GET http://localhost:8080/expense @ o || C=
Untitled Request
GET v http://localhost:8080/expense m Save v
Params Authorization Headers (7) Body Pre-request Script Tests Settings Cookies Code
® none form-data x-www-form-urlencoded raw binary GraphQL
Body Cookies Headers (5) TestResults : @® status: 2000K Time: 6ms Size: 275B Save Response ¥
Pretty Raw Preview Visualize JSON ¥ 5 m Q
1 I
2 {
3 "id": "s5ff623025e4a1949b1679763",
4 "expenseName": "Movies",
5 "expenseCategory": "ENTERTAINMENT",
6 "expenseAmount™: 30
7 }
s

Update Expense

To update an Expense, we are going to use a PUT request, using the
@PutMapping annotation.

ExpenseService.java

package com.programming.techie.expensetracker.service;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import
com.programming.techie.expensetracker.exception.ExpenseNotFoundEx
ception;

import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.repository.ExpenseRepositor
yi

import lombok.RequiredArgsConstructor;

import org.springframework.stereotype.Service;

import org.springframework.transaction.annotation.Transactional;

import java.util.List;

import java.util.stream.Collectors;

@Service
@RequiredArgsConstructor
@Transactional

public class ExpenseService {

private final ExpenseRepository expenseRepository;
public String addExpense (ExpenseDto expenseDto) {
Expense expense = mapFromDto (expenseDto) ;
return expenseRepository.insert (expense).getId():;

}

public void updateExpense (ExpenseDto expenseDto) {

Expense savedExpense =
expenseRepository.findById (expenseDto.getId())
.orElseThrow(() -> new

RuntimeException (String.format ("Cannot Find Expense by ID %s",
expenseDto.getId())));
savedExpense.setExpenseName (expenseDto.getExpenseName ()) ;

savedExpense.setExpenseCategory (expenseDto.getExpenseCategory ());
savedExpense.setExpenseAmount (expenseDto.getExpenseAmount ()) ;

expenseRepository.save (savedExpense) ;

}

public ExpenseDto getExpense (String name) {
Expense expense = expenseRepository.findByName (name)
.orElseThrow(() -> new
ExpenseNotFoundException (String.format ("Cannot Find Expense by
Name - %s", name)));
return mapToDto (expense) ;

}

public List<ExpenseDto> getAllExpenses () {
return expenseRepository.findAll ()
.stream()

.map (this::mapToDto) .collect (Collectors.toList());
}

private ExpenseDto mapToDto (Expense expense) {
return ExpenseDto.builder ()
.i1d (expense.getId())
.expenseName (expense.getExpenseName ())
.expenseCategory (expense.getExpenseCategory())
.expenseAmount (expense.getExpenseAmount ())

Lbuild() ;

private Expense mapFromDto (ExpenseDto expense) {
return Expense.builder ()
.expenseName (expense.getExpenseName ())
.expenseCategory (expense.getExpenseCategory())
.expenseAmount (expense.getExpenseAmount ())
Lbuild() ;

We are receiving the Expense we need to

ExpenseController.java
package com.programming.techie.expensetracker.web;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.service.ExpenseService;
import lombok.RequiredArgsConstructor;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import
org.springframework.web.servlet.support.ServletUriComponentsBuild
er;

import java.net.URI;
import java.util.List;

@RestController

@RequestMapping ("/api/xpense")
@RequiredArgsConstructor

public class ExpenseController {

private final ExpenseService expenseService;

@PostMapping
public ResponseEntity<Void> addExpense (@RequestBody ExpenseDto
expenseDto) {
String expenseld = expenseService.addExpense (expenseDto) ;

URI location = ServletUriComponentsBuilder
.fromCurrentRequest ()
.path("/{id}")
.buildAndExpand (expenseId)

.toUri () ;
return ResponseEntity.created(location)
Lbuild() ;

}

@PutMapping
@ResponseStatus (HttpStatus.OK)
public void updateExpense (ERequestBody Expense expense) {
expenseService.updateExpense (expense) ;

@GetMapping
@ResponseStatus (HttpStatus.OK)
public List<ExpenseDto> getAllExpenses () {
return expenseService.getAllExpenses|();

@GetMapping ("/{name}")
@ResponseStatus (HttpStatus.OK)
public ExpenseDto getExpenseByName (@PathVariable String name)

return expenseService.getExpense (name) ;

Response Status for PUT Requests
We are also returning the status as OK(200) for PUT Requests.

Testing PUT Request

Let’s start our Spring Boot Application and make the REST API call to
Update Expense.

PUT http://localhost:8080/expense ® = oo

Untitled Request

No Environment v @

o
—

BUILD

PUT ¥ http://localhost:8080/expense
Params Authorization Headers (9) Body ® Pre-request Script Tests Settings Cookies Code
none form-data x-www-form-urlencoded ® raw binary GraphQL JSON ~ Beautify
1 [|
2 "id": "5ff623025e4a1949b1679763",
3 "expenseName": "Movies",
a "expenseCategory”: "ENTERTAINMENT",
5 "expenseAmount”: 3@
6 T
2
Body Cookies Headers (4) TestResults @ Status: 2000K Time: 120ms Size: 123 B Save Response ¥
Pretty Raw Preview Visualize Text ¥ > m Q
1
u .
No Environment v @ =
GET http://localhost:8080/expense ® | so0
Untitled Request BUILD
GET v http://localhost:8080/expense Send v Save ~
Params Authorization Headers (7) Body Pre-request Script Tests Settings Cookies Code
® none form-data x-www-form-urlencoded raw binary GraphQL
This request does not have a body
g
Body Cookies Headers (5) TestResults @ Status: 2000K Time: 6ms Size: 275 B Save Response ¥

Pretty Raw Preview Visualize JSON ~ 5

10

2 {

3 "id": "5ff623025€4a1949b1679763",
4 "expenseName": "Movies",

5 "expenseCategory": "ENTERTAINMENT",
6 "expenseAmount”: 30

7 }

s]

mQ

Delete Expense

To implement the DELETE Endpoint we can use the @beleteMapping
annotation.

ExpenseService.java

package com.programming.techie.expensetracker.service;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import
com.programming.techie.expensetracker.exception.ExpenseNotFoundEx
ception;
import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.repository.ExpenseRepositor
yi
import lombok.RequiredArgsConstructor;
import org.springframework.stereotype.Service;

import
org.springframework.transaction.annotation.Transactional;
import java.util.List;
import java.util.stream.Collectors;
@Service
@RequiredArgsConstructor
@Transactional
public class ExpenseService {
private final ExpenseRepository expenseRepository;
public String addExpense (ExpenseDto expenseDto) {
Expense expense = mapFromDto (expenseDto) ;
return expenseRepository.insert (expense).getId():;
}
public void updateExpense (ExpenseDto expenseDto) {
Expense savedExpense =
expenseRepository.findById (expenseDto.getId())
.orElseThrow (() -> new

RuntimeException (String.format ("Cannot Find Expense by ID %s",
expenseDto.getId())))
savedExpense.setExpenseName (expenseDto.getExpenseName ()) ;

savedExpense.setExpenseCategory (expenseDto.getExpenseCategory ()) ;

savedExpense.setExpenseAmount (expenseDto.getExpenseAmount ()) ;

expenseRepository.save (savedExpense) ;

}

public ExpenseDto getExpense (String name) {
Expense expense = expenseRepository.findByName (name)
.orElseThrow(() -> new
ExpenseNotFoundException (String.format ("Cannot Find Expense by
Name - %s", name)));
return mapToDto (expense) ;

}

public List<ExpenseDto> getAllExpenses () {
return expenseRepository.findAll ()
.stream()

.map (this: :mapToDto) .collect (Collectors.toList())
}

public void deleteExpense (String id) {
expenseRepository.deleteById(id) ;
}

private ExpenseDto mapToDto (Expense expense) {
return ExpenseDto.builder ()
.1d (expense.getId())
.expenseName (expense.getExpenseName ())

.expenseCategory (expense.getExpenseCategory())
.expenseAmount (expense.getExpenseAmount ())
Lbuild() ;

private Expense mapFromDto (ExpenseDto expense) {
return Expense.builder ()
.expenseName (expense.getExpenseName ())

.expenseCategory (expense.getExpenseCategory())

.expenseAmount (expense.getExpenseAmount ())
Lbuild() ;

ExpenseController.java

package com.programming.techie.expensetracker.web;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import com.programming.techie.expensetracker.model.Expense;
import
com.programming.techie.expensetracker.service.ExpenseService;
import lombok.RequiredArgsConstructor;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import
org.springframework.web.servlet.support.ServletUriComponentsBuild
er;

import java.net.URI;
import java.util.List;

@RestController

@RequestMapping ("/api/xpense")
@RequiredArgsConstructor

public class ExpenseController ({

private final ExpenseService expenseService;

@PostMapping
public ResponseEntity<Void> addExpense (@RequestBody ExpenseDto
expenseDto) {
String expenseld = expenseService.addExpense (expenseDto) ;
URI location = ServletUriComponentsBuilder
.fromCurrentRequest ()
.path("/{id}")
.buildAndExpand (expenseld)
.toUri();
return ResponseEntity.created(location)
Lbuild() ;
}

@PutMapping
@ResponseStatus (HttpStatus.OK)
public void updateExpense (@RequestBody Expense expense) {
expenseService.updateExpense (expense) ;

@GetMapping
@ResponseStatus (HttpStatus.OK)
public List<ExpenseDto> getAllExpenses () {
return expenseService.getAllExpenses () ;

@GetMapping ("/{name}")
@ResponseStatus (HttpStatus.OK)

public ExpenseDto getExpenseByName (@PathVariable String name)

return expenseService.getExpense (name) ;

@DeleteMapping ("/{id}"™)

@ResponseStatus (HttpStatus.NO CONTENT)

public void deleteExpense (@PathVariable String id) {
expenseService.deleteExpense (id) ;

Response Status for DELETE Requests

As we are going to Delete a Resource, the appropriate Response Status should
be NO CONTENT(204).

Testing DELETE Request

Let’s start our Spring Boot Application and make the REST API call to
Delete Expense.

PUT http://localhost:8080/expense @

Untitled Request

PUT ¥ http://localhost:8080/expense
Params Authorization Headers (9) Body ®
none form-data x-www-form-urlencoded
1
2 "id": "5ff623025e421949b1679763",
3 "expenseName": "Movies",
a "expenseCategory”: "ENTERTAINMENT",
5 "expenseAmount”: 3@
6

Body Cookies Headers (4) TestResults

Pretty Raw Preview Visualize Text ¥

1

GET http://localhost:8080/expense @ + oo

Untitled Request

GET v http://localhost:8080/expense
Params Authorization Headers (7) Body
® none form-data x-www-form-urlencoded

Body Cookies Headers (5) TestResults
Pretty Raw Preview Visualize JSON +

1

Pre-request Script Tests Settings
® raw binary GraphQL JSON ~
s,
@® status: 200 OK
=
o

Pre-request Script Tests Settings

raw binary GraphQL

This request does not have a body

2
i
¥

@

=

No Environment

Time: 120 ms

o
—

@

BUILD

Size: 123B

No Environment

Status: 200 0K Time: 19 ms

Cookies Code

Beautify

Save Response ¥

mQ

4

BUILD

Size: 166 B

Cookies Code

Save Response ¥

mQ

T

Error Handling in REST API

While Implementing GET All Expenses and GET Single Expense
Endpoints, we are throwing an ExpenseNotFoundException

Here are the ways we can handle the Exceptions:

Using @ExceptionHandler Annotation

You can add a method which contains the @ExceptionHandler annotation,
inside the Controller itself, for example inside ExpenseController.java

@RestController

@RequestMapping ("/api/expense)
@RequiredArgsConstructor

public class ExpenseController ({

@ExceptionHandler ({ExpenseNotFoundException.class})
@ResponseStatus (value = HttpStatus.BAD REQUEST, reason =
"Cannot Find Expense with the given data")
public void handleException () {
// Do Nothing

}

The major drawback in this approach is this Exception Handler is only
applicable for the ExpenseController.java. For any kind of non-trivial
applications, there will be more than one controller, so in that case, its not
so practical to repeat this information in all our controllers.

Using @ControllerAdvice

We can define a Global Exception Handler using the @controlleradvice
annotation.

ExpenseNotFoundExceptionHandler.java

package com.programming.techie.expensetracker.exception;

import org.springframework.http.HttpHeaders;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import
org.springframework.web.bind.annotation.ControllerAdvice;
import
org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.context.request.WebRequest;
import
org.springframework.web.servlet.mvc.method.annotation.ResponseE
ntityExceptionHandler;

@ControllerAdvice
public class ExpenseNotFoundExceptionHandler extends
ResponseEntityExceptionHandler
@ExceptionHandler (value
= {ExpenseNotFoundException.class})
protected ResponseEntity<Object> handleConflict (
RuntimeException ex, WebRequest request) {
String bodyOfResponse = ex.getMessage ()
return handleExceptionInternal (ex, bodyOfResponse,
new HttpHeaders (), HttpStatus.BAD REQUEST, request);
}

As you can see we are using the @ExceptionHandler inside a
ExpenseNotFoundExceptionHandler class which extends
ResponseEntityExceptionHandler

Whenever, there 1S an ExpenseNotFoundException thrown in our
application, our clients will receive HttpStatus.BAD REQUEST as
response, with an appropriate error message we are setting during creating
the Exception.

Using ResponseStatusException class

Since spring 5.0 instead of throwing a seperate exception like
ExpenseNotFoundException we can directly throw the
ResponseStatusException

Example:

Expense savedExpense =
expenseRepository.findById (expense.getId())
.0orElseThrow (() -> new
ResponseStatusException (HttpStatus.BAD REQUEST,

String.format ("Cannot Find Expense by ID %s",

expense.getId())));

The downside of using this class is we have to duplicate the code across
muliple classes, and it's also difficult to enforce application wide exception
handling.

The recommended way is to use the @controlleraAdvice approach.

But whatever approach you choose, make sure to follow that consistently
across your project.

Testing REST API

We can make use of the Spring Testing Library to test our REST API.

The Spring Test Framework provides us with an annotation -called
ewebMvcTest which is a specialized annotation which will create the Spring
Context for us with only beans which are related to the Spring MVC
components like @Controller, @RestController, @AutoconfigureWebMvc
etc.

Let's create the ExpenseControllerTest

package com.programming.techie.expensetracker.web;

import com.programming.techie.expensetracker.dto.ExpenseDto;
import
com.programming.techie.expensetracker.model.ExpenseCategory;
import
com.programming.techie.expensetracker.service.ExpenseService;
import org.junit.Test;

import org.junit.jupiter.api.DisplayName;

import org.mockito.Mockito;

import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTes
t;

import org.springframework.boot.test.mock.mockito.MockBean;
import org.springframework.http.HttpHeaders;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.MvcResult;

import
org.springframework.test.web.servlet.result.MockMvcResultMatchers

import java.math.BigDecimal;

import static org.junit.jupiter.api.Assertions.assertTrue;

import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilde
rs.post;

@WebMvcTest (controllers = ExpenseController.class)
public class ExpenseControllerTest {

@MockBean
private ExpenseService expenseService;
@Autowired
private MockMvc mockMvc;

@Test
@DisplayName ("Should Create Expense")
public void shouldCreateExpense () throws Exception {
ExpenseDto expenseDto = ExpenseDto.builder ()
.expenseCategory (ExpenseCategory.ENTERTAINMENT)
.expenseName ("Movies")
.expenseAmount (BigDecimal.TEN)
.build() ;
Mockito.when (expenseService.addExpense (expenseDto)) .thenReturn ("1

23");
MvcResult mvcResult = mockMvc.perform(post ("/api/expense"))
.andExpect (MockMvcResultMatchers.status () .1isCreated())

.andExpect (MockMvcResultMatchers.header () .exists (HttpHeaders.LOCA
TION))
.andReturn () ;

assertTrue (mvcResult.getResponse () .getHeaderValue (HttpHeaders.LOC
ATION) .toString () .contains ("123"));

}

We are setting up the needed Spring Context for our REST API Test using the
eWebMvcTest and MockMve to create a mocked out Servlet Environment to fire
mocked HTTP Requests.

To make the REST API call we are using the mockMvc.perform() method ,
and with the return type we are making assertion that the required HTTP
STATUS is 201, followed by the assertions for the LOCATION Header.

If you want to learn more about Testing Spring Boot Applications, have a
look at the Youtube Series - where I show you how to test a complete Spring
Boot Application.

https://www.youtube.com/playlist?list=PLSVW22jAG8pByICwbp3c99FoXWIaDJ1gv

Documenting the REST API

In this chapter, we are going to learn how to document our REST APIs.

Why should we document our REST APIs?

In the real world, consumers of an API should have a good understanding of
the REST APIs they are using. Having good documentation is vital in
helping the users to use the API effectively.

Having good documentation for our REST APIs is necessary. On the other
hand, maintaining the documentation manually is tiresome and error-prone.

##Generating REST API Documentation using Swagger and Springfox

Swagger and Springfox makes this process of generating REST API
documentation quick and painless. Using these tools, we can automate the
process of documentation.

What is Swagger?

So what is Swagger? It is an OPEN API specification that is created as a
standard to describe your REST API.

As we are using Springboot to develop our REST API we can use a library
called as Springfox to automatically create JSON Documentation.

Adding Springfox Dependencies to project

Inside our pom.xm1 file, add the following maven dependencies. This should
download the required springfox dependencies to our project.

<dependency>
<groupld>io.springfox</groupId>
<artifactId>springfox-boot-starter</artifactId>

https://springfox.github.io/springfox/

<version>3.0.0</version>
</dependency>

Configure Swagger and Springfox

Now it’s time to configure Swagger and Springfox in our project, for that we
will create a configuration class called swaggerconfiguration.

This class is marked with annotation econfiguration and @EnableSwagger?2

package com.programming.techie.expensetracker.config;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import springfox.documentation.builders.ApiInfoBuilder;
import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.service.ApiInfo;

import springfox.documentation.service.Contact;

import springfox.documentation.spi.DocumentationType;

import springfox.documentation.spring.web.plugins.Docket;
import
springfox.documentation.swagger2.annotations.EnableSwagger?2;

@Configuration
@EnableSwagger?
public class SwaggerConfiguration ({

@Bean
public Docket expenseTrackerApi () {
return new Docket (DocumentationType.SWAGGER 2)
.select ()
.apis (RequestHandlerSelectors.any())
.paths (PathSelectors.any())
.build()
.apiInfo(getApiInfo());

private ApiInfo getApiInfo() {
return new ApiInfoBuilder ()
.title ("Expense Tracker API")
.version("1.0")
.description("API for Expense Tracker
Application™)
.contact (new Contact("Sai Upadhyayula",
"http://programmingtechie.com", "xyz@email.com"))

.license ("Apache License Version 2.0")
Lbuild();

Inside the swaggerconfiguration.java class, we created a Bean with the
name expenseTrackerApi, this can be anything you like.

Inside the bean, we are creating a new Docket which is a Springfox internal
class and we are specifying the Documentation Type as Swagger2,
everything which is returned inside the expenseTrackeraP1 () method is the
standard defaults for Springfox.

We have also some API information through the apiinfo () method.

Now let’s import this configuration file to our
ExpenseTrackerRestApiApplication

package com.programming.techie.expensetracker;

import
com.programming.techie.expensetracker.config.SwaggerConfiguratio
n;

import org.springframework.boot.SpringApplication;

import
org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Import;

@SpringBootApplication
@Import (SwaggerConfiguration.class)
public class ExpenseTrackerRestApiApplication {

public static void main(String[] args) {

SpringApplication.run (ExpenseTrackerRestApiApplication.class,
args) ;

}

We have added @Import (SwaggerConfiguration.class) to our
ExpenseTrackerRestApiApplication. This should enable vaagger and
Springfox in our application. Now let’s see how this all works.

###How Springfox works? Springfox scans our backend application and
looks for all the Controllers and related components when starting up the
application and it automatically generates the documentation for our REST
APL

Using springfox-swagger-ui, it constructs a webpage where we can see the
documentation for our REST API.

Once we start the application, we can see the documentation at
http://localhost:8080/swagger-ui/

Expense Tracker API®

API for Expense Tracker Application

Sai Upadhyayula - Website
Send email to Sai Upadhyayula
Apache License Version 2.0

basic-error-controller sasic Error Controller >

expense-controller Expense Controller N
/api/expense getAllExpenses
/api/expense addExpense
/api/expense updateExpense

[DISHS S /api/expense/{id} deleteExpense

/api {name}

Models >

You can also make requests to the API using the Swagger UI.

Conclusion

I hope this ebook was helpful in improving your understanding of how to
build a REST API.

You can find the source code of the Expense Tracker API Project at Github.

	Overview
	Source Code Download
	For further interesting Content, you can follow me at

	Getting Started
	Exploring Maven Dependencies
	Define MongoDB properties
	Creating Domain Model
	Creating Repository
	Creating Custom Queries using @Query

	Creating REST API
	REST API URL Naming Conventions
	Use Nouns instead of verbs
	Use Lowercase Letters
	Do not use file extensions

	Add Expense
	Response Status for POST Request
	Testing POST Request

	Get Expense
	Response Status for GET Request
	Testing GET Request

	Get All Expenses
	Testing GET Request

	Update Expense
	Response Status for PUT Requests
	Testing PUT Request

	Delete Expense
	Response Status for DELETE Requests
	Testing DELETE Request

	Error Handling in REST API
	Using @ExceptionHandler Annotation
	Using @ControllerAdvice
	Using ResponseStatusException class

	Testing REST API
	Documenting the REST API
	Why should we document our REST APIs?
	What is Swagger?
	Adding Springfox Dependencies to project
	Configure Swagger and Springfox

	Conclusion

